Theoret. chim. Acta (Berl.) 24, 71-77 (1972) © by Springer-Verlag 1972

# Electron Spin-Spin Contact Interaction in Many-Electron Atoms\*

B. W. N. LO, K. M. S. SAXENA, and S. FRAGA

Division of Theoretical Chemistry, Department of Chemistry, University of Alberta, Edmonton 7, Alberta, Canada

Received May 24, 1971

A general formulation has been developed for the evaluation of the total electron spin-spin contact interaction in many-electron atoms, including both the intra- and inter-shell contributions. Calculations have been carried out, using existing analytical Hartree-Fock functions, for the positive ions, neutral systems, and negative ions for all the atoms from He to Kr.

Es wird ein allgemeiner Formalismus zur Berechnung der gesamten Elektronen-Spin-Spin-Kontakt-Wechselwirkung in Vielelektronen-Atomen angegeben, der sowohl die Anteile der Wechselwirkung innerhalb einer Schale als auch zwischen einzelnen Schalen berücksichtigt. Berechnungen wurden unter Benutzung vorhandener analytischer Hartree-Fock-Funktionen für die positiven Ionen, die neutralen Systeme und die negativen Ionen aller Atome von He bis Kr durchgeführt.

## Introduction

The electron spin-spin contact interaction has received little attention in the past by comparison with the better known fine and hyperfine interactions.

The formulation for the intrashell contribution to this interaction has been developed by Sessler and Foley [22] ( $s^n$  configurations), Fraga and Thorhallsson [13] ( $p^n$  configurations), and Armstrong [1, 2] ( $d^n$  and  $f^n$  configurations). Numerical values have been determined for the highest occupied shell of the positive ions, neutral systems, and negative ions from He to Kr by Fraga, Thorhallsson, and Fisk [14] and for a large number of lanthanide ions by Saxena, Lo, and Fraga [21].

It is now intended to present the complete theoretical formulation and use it for the evaluation of the total electron spin-spin contact interaction in the positive ions, neutral systems, and negative ions for all the atoms from He to Kr.

## **Theoretical Formulation**

The electron spin-spin contact hamiltonian operator is (Armstrong [1] and Fontana and Meath [12])

$$H_{\rm ssc} = -(32\pi/3)\,\mu_B^2 \sum_{i < j} (\mathbf{s}_i \cdot \mathbf{s}_j)\,\delta(\mathbf{r}_i - \mathbf{r}_j)$$
  
=  $-(8\pi/3)\,\alpha^2 \sum_{i < j} (\mathbf{s}_i \cdot \mathbf{s}_j)\,\delta(\mathbf{r}_i - \mathbf{r}_j),$ 

<sup>\*</sup> This work has been supported in part by the National Research Council of Canada.

the last expression being given in a.u. The position and spin angular momentum vector operators are denoted by  $\mathbf{r}$  and  $\mathbf{s}$ ,  $\delta(\mathbf{r}_i - \mathbf{r}_j)$  represents the three-dimensional delta function, and the summation extends over all the pairs of electrons in the system;  $\mu_B$  denotes the Bohr magneton and  $\alpha$  is the fine structure constant.

The total electron spin-spin contact interaction may be written as

$$E_{\rm ssc} = \langle \Psi | H_{\rm ssc} | \Psi \rangle = \sum_{a} E_{\rm ssc, aa} + \sum_{a < b} E_{\rm ssc, ab}$$

where distinction is made between the intra- and inter-shell contributions; the summations extend over all the occupied shells. The total, antisymmetric function,  $\Psi$ , may be written in a given coupling scheme, using the notation of Innes and Ufford [15], as

$$\Psi = |l_1^{n_1}\gamma_1\Gamma_1, l_2^{n_2}\gamma_2\Gamma_2, l_3^{n_3}\gamma_3\Gamma_3, \dots, l_g^{n_g}\gamma_g\Gamma_t\rangle,$$

where  $\gamma_i$  denotes the total quantum numbers for the shell  $l_i$ , occupied by  $n_i$  electrons.  $\Gamma_i$  is obtained by coupling of  $\gamma_i$  with  $\Gamma_{i-1}$ , and so on;  $\Gamma_1$  is identical to  $\gamma_1$  and  $\Gamma_i$  represents the quantum numbers for the state under consideration, standing in the present work for  $\tau LS$ , where  $\tau$  denotes whatever additional quantum numbers are required to completely determine the state.

Using the general coefficients of fractional parentage (CFP) (Chisholm *et al.* [5]), the two types of contributions mentioned above may be expressed as linear combinations of matrix elements over antisymmetrized two-electron states. (In this connection see the work of Armstrong [3, 4], de-Shalit and Talmi [7], Donlan [8], Doyle [10], Fano [11], Innes and Ufford [15] and Shore [23].) One obtains

$$\begin{split} E_{\rm ssc,\,aa} &= \frac{1}{2} \, n_a(n_a - 1) \\ & \cdot \Sigma \left[ l_a^2 \Gamma ; l_1^{n_1} \gamma_1 \Gamma_1 \dots l_a^{n_a - 2} \gamma_a'' \Gamma_a'' \dots l_g^{n_g} \gamma_g \Gamma_t'' \mid \} \, l_1^{n_1} \gamma_1 \Gamma_1 \dots l_a^{n_a} \gamma_a \Gamma_a \dots l_g^{n_g} \gamma_g \Gamma_t \right] \\ & \cdot \left[ l_a^2 \overline{\Gamma} ; l_1^{n_1} \gamma_1 \Gamma_1 \dots l_a^{n_a - 2} \gamma_a'' \Gamma_a'' \dots l_g^{n_g} \gamma_g \Gamma_t'' \mid \} \, l_1^{n_1} \gamma_1 \Gamma_1 \dots l_a^{n_a} \gamma_a \Gamma_a \dots l_g^{n_g} \gamma_g \Gamma_t \right] \\ & \cdot \langle l_a^2 \Gamma \mid A^{\dagger} \, \mathbf{h}_{\rm ssc} A \mid l_a^2 \overline{\Gamma} \rangle \,, \\ E_{\rm ssc,\,ab} &= n_a n_b \Sigma \left[ l_a l_b \Gamma ; l_1^{n_1} \gamma_1 \Gamma_1 \dots l_a^{n_a - 1} \gamma_a' \Gamma_a' \dots l_b^{n_b - 1} \gamma_b' \Gamma_b'' \dots l_g^{n_g} \gamma_g \Gamma_t'' \\ & \cdot \mid \} \, l_1^{n_1} \gamma_1 \Gamma_1 \dots l_a^{n_a} \gamma_a \Gamma_a \dots l_b^{n_b} \gamma_b \Gamma_b \dots l_g^{n_g} \gamma_g \Gamma_t \right] \\ & \cdot \left[ l_a l_b \overline{\Gamma} ; l_1^{n_1} \gamma_1 \Gamma_1 \dots l_a^{n_a - 1} \gamma_a' \Gamma_a' \dots l_b^{n_b - 1} \gamma_b' \Gamma_b'' \dots l_g^{n_g} \gamma_g \Gamma_t'' \\ & \cdot \mid \} \, l_1^{n_1} \gamma_1 \Gamma_1 \dots l_a^{n_a} \gamma_a \Gamma_a \dots l_b^{n_b} \gamma_b \Gamma_b \dots l_g^{n_g} \gamma_g \Gamma_t \right] \\ & \cdot \langle l_a l_b \overline{\Gamma} \mid A^{\dagger} \, \mathbf{h}_{\rm ssc} \, A \mid l_a l_b \overline{\Gamma} \rangle \,, \end{split}$$

where the summations extend over all the coparent ( $\Gamma$  and  $\overline{\Gamma}$ ) and preparent ( $\Gamma_i''$ ) states; the primes and double primes indicate the loss of one and two electrons, respectively, and the expressions in brackets denote the corresponding CFP.  $h_{ssc}$  represents the spin-spin contact interaction operator for two electrons.

The two-electron matrix elements may be written as

$$\begin{split} \langle l_a^2 \Gamma | A^{\dagger} \, \mathbf{h}_{\rm ssc} A \, | \, l_a^2 \overline{\Gamma} \rangle &= \langle l_a^2 S M_S L M_L | \, \mathbf{h}_{\rm ssc} | \, l_a^2 \overline{S} \overline{M}_{\overline{S}} \overline{L} \overline{M}_{\overline{L}} \rangle \\ &= \frac{\alpha^2}{3} \left[ \frac{3}{2} - S(S+1) \right] R_2(a,a) \left\{ \sum_k (2k+1) \, f_k(l_a l_a L) \right\} \\ &\quad \cdot \, \delta(S, \overline{S}) \, \delta(M_S, \overline{M}_{\overline{S}}) \, \delta(L, \overline{L}) \, \delta(M_L, \overline{M}_L) \,, \end{split}$$

$$\begin{split} \langle l_a l_b \Gamma | A^{\dagger} \, \mathbf{h}_{\rm ssc} A \, | \, l_a l_b \overline{\Gamma} \rangle &= \langle l_a l_b S M_S L M_L | \, \mathbf{h}_{\rm ssc} | \, l_a l_b \overline{S} \, \overline{M}_{\overline{S}} \overline{L} \overline{M}_{\overline{L}} \rangle \\ &+ (-1)^{l_a + l_b + S - L} \langle l_b l_a S M_S L M_L | \, \mathbf{h}_{\rm ssc} | \, l_a l_b \overline{S} \overline{M}_{\overline{S}} \overline{L} \overline{M}_{\overline{L}} \rangle \\ &= \frac{\alpha^2}{3} \left[ \frac{3}{2} - S(S+1) \right] R_2(a, b) \\ &\cdot \left\{ \sum_k (2k+1) \left[ f_k(l_a l_b L) + (-1)^S \, g_k(l_a l_b L) \right] \right\} \\ &\cdot \delta(S, \overline{S}) \, \delta(M_S, \overline{M}_{\overline{S}}) \, \delta(L, \overline{L}) \, \delta(M_L, \overline{M}_{\overline{L}}) \,, \end{split}$$

with

$$\begin{split} f_k(l_a l_b L) &= (-1)^{L+l_a+l_b} \begin{cases} L & l_b & l_a \\ k & l_a & l_b \end{cases} \langle l_a \parallel \mathbf{C}^{(k)} \parallel l_a \rangle \langle l_b \parallel \mathbf{C}^{(k)} \parallel l_b \rangle ,\\ g_k(l_a l_b L) &= (-1)^{l_a+l_b+k} \begin{cases} L & l_a & l_b \\ k & l_a & l_b \end{cases} \langle l_a \parallel \mathbf{C}^{(k)} \parallel l_b \rangle^2 , \end{split}$$

in terms of 6-j symbols and double-barred matrix elements<sup>1</sup> of the spherical harmonics tensor operators;  $f_k$  and  $g_k$  represent the direct and exchange contributions, respectively. The radial integrals,  $R_2(a, b)$ , are defined by

$$R_2(a,b) = \int_0^\infty P_a^2(r) P_b^2(r) r^{-2} dr,$$

with the radial function,  $P_a(r)$ , being normalized according to

$$\int_{0}^{\infty} P_a^2(r) dr = 1 \; .$$

The values of the CFP have been determined by Chisholm et al. [5] for configurations containing up to three shells of non-equivalent electrons. For more complex configurations the generalized CFP may be calculated from the singleand/or two-particle CFP, tabulated by Nielson and Koster [18], Karaziya *et al.* [16], and Donlan [9].

The above expressions  $^2$  may be simplified in the case of electronic configurations with only one open shell. The formulas for the intra-shell contribution reduce

<sup>&</sup>lt;sup>1</sup> For the definition of the double-barred matrix elements, see the work (pp. 288-294) of Shore and Menzel [24].

<sup>&</sup>lt;sup>2</sup> It should be mentioned that a different formulation has been given by Rudzikas and co-workers [19, 20].

then to those given by Sessler and Foley [22], Fraga and Thorhallsson [13], and Armstrong [2]. The inter-shell contribution, when at least one of the two shells is fully occupied, becomes (see de-Shalit and Talmi [7])

$$E_{\rm ssc, ab} = \frac{1}{4} n_a n_b \Sigma \left[ (2S+1) (2\overline{S}+1) (2L+1) (2\overline{L}+1) \right]^{\frac{1}{2}} \\ \cdot \left[ (2l_a+1) (2l_b+1) \right]^{-1} \langle l_a l_b SL | A^{\dagger} h_{\rm ssc} A | l_a l_b \overline{S} \overline{L} \rangle$$

where the summation extends over L,  $\overline{L}$ , S, and  $\overline{S}$ , and  $\overline{S}$ . This expression can be rewritten as

$$E_{\rm ssc, ab} = \frac{\alpha^2}{3} n_a n_b R_2(a, b) \sum_k (2k+1) \left[ f_k(l_a l_b) + g_k(l_a l_b) \right]$$

with

$$\begin{split} f_k(l_a l_b) &= \left[ 4(2l_a+1) \left( 2l_b+1 \right) \right]^{-1} \left\langle l_a \| \boldsymbol{C}^{(k)} \| \, l_a \right\rangle \left\langle l_b \| \boldsymbol{C}^{(k)} \| \, l_b \right\rangle \\ &\quad \cdot \sum_L \left( -1 \right)^{l_a+l_b+L} (2L+1) \left\{ \begin{matrix} L & l_b & l_a \\ k & l_a & l_b \end{matrix} \right\} \\ &\quad \cdot \sum_S \left( 2S+1 \right) \left[ \frac{3}{2} - S(S+1) \right], \\ g_k(l_a l_b) &= \left( -1 \right)^{l_a+l_b+k} \left[ 4(2l_a+1) \left( 2l_b+1 \right) \right]^{-1} \left\langle l_a \| \boldsymbol{C}^{(k)} \| \, l_b \right\rangle^2 \\ &\quad \cdot \sum_L \left( -1 \right)^{2L} \left( 2L+1 \right) \left\{ \begin{matrix} L & l_a & l_b \\ k & l_a & l_b \end{matrix} \right\} \sum_S \left( -1 \right)^S \left( 2S+1 \right) \left[ \frac{3}{2} - S(S+1) \right] \end{split}$$

Taking into account that these expressions reduce to

$$\begin{split} f_k(l_a l_b) &= 0 \;, \\ g_k(l_a l_b) &= \frac{3}{4} \left( -1 \right)^{l_a + l_b + k} [(2l_a + 1) \, (2l_b + 1)]^{-1} \, \langle l_a \| {\pmb C}^{(k)} \| \, l_b \rangle^2 \;, \end{split}$$

one finally obtains, after carrying out the k-summation (see, e.g., Shore and Menzel [24]),

$$E_{\rm ssc,ab} = \frac{\alpha^2}{4} n_a n_b R_2(a, b) \, .$$

# **Results and Discussion**

The radial integrals,  $R_2$ , have been evaluated from the analytical Hartree-Fock functions of Clementi [6] and Malli [17]. Table 1 collects the values of the total electron spin-spin contact interaction for the positive ions, neutral systems, and negative ions for all the atoms from He to Kr; the relative weights of the intra- and inter-shell contributions are exemplified in Table 2 for Br.

#### Electron Spin-Spin Contact Interaction

This interaction, as expected, is not negligible; a value of about 1 a.u. is predicted for Kr. It must be concluded that, when considering the absolute magnitude of the relativistic corrections, this interaction should be included.

The difference observed in the values for the various states arising from a given configuration is very small. On the other hand, however, the energies of other excited states relative to the groundstate may be affected considerably by consideration of this interaction, depending on what shell the electron(s) has (have) been excited from.

| Configuration <sup>a</sup> | State              | Positive ions |         | Neutral atoms |         | Negative ions |         |  |  |
|----------------------------|--------------------|---------------|---------|---------------|---------|---------------|---------|--|--|
|                            |                    | System        | Esse    | System        | Esse    | System        | Essc    |  |  |
| 1s <sup>2</sup>            | <sup>1</sup> S     | Li            | 57      | He            | 14      |               |         |  |  |
| 2 <i>s</i> <sup>1</sup>    | $^{2}S$            | Be            | 151     | Li            | 58      |               |         |  |  |
| $2s^2$                     | 1S                 | B             | 325     | Be            | 154     | Li            | 58      |  |  |
| $2p^1$                     | $^{2}p$            | C             | 587     | В             | 322     |               |         |  |  |
| $2p^{2}$                   | $^{3}P$            | Ν             | 965     | С             | 582     | В             | 320     |  |  |
| 1                          | $^{1}D$            |               | 970     |               | 584     |               | 321     |  |  |
|                            | <sup>1</sup> S     |               | 976     |               | 587     |               | 321     |  |  |
| $2p^{3}$                   | <sup>4</sup> S     | 0             | 1484    | Ν             | 959     | С             | 579     |  |  |
| -r                         | $^{2}D$            |               | 1495    |               | 965     | -             | 581     |  |  |
|                            | $^{2}P$            |               | 1 502   |               | 968     |               | 582     |  |  |
| $2n^4$                     | ${}^{3}P$          | F             | 2196    | 0             | 1491    | Ν             | 961     |  |  |
| -r                         | $^{1}D$            |               | 2 2 0 6 | -             | 1 4 9 6 |               | 963     |  |  |
|                            | 1 <u>S</u>         |               | 2221    |               | 1 504   |               | 966     |  |  |
| $2n^{5}$                   | $^{2}P$            | Ne            | 3 1 2 0 | F             | 2 201   | 0             | 1491    |  |  |
| $2p^6$                     | 1 <u>S</u>         | Na            | 4 2 9 2 | Ne            | 3124    | F             | 2199    |  |  |
| $3s^{1}$                   | $^{2}S$            | Mg            | 5745    | Na            | 4295    | -             |         |  |  |
| $3s^2$                     | <sup>1</sup> S     | Al            | 7515    | Mg            | 5750    | Na            | 4296    |  |  |
| $3n^1$                     | $^{2}p$            | Si            | 9617    | Al            | 7511    | 1.00          |         |  |  |
| $3p^2$                     | $^{3}P$            | P             | 12094   | Si            | 9612    | A1            | 7 509   |  |  |
| - F                        | ${}^{1}D$          | -             | 12096   |               | 9613    | • • •         | 7 509   |  |  |
|                            | 1 <u>S</u>         |               | 12096   |               | 9613    |               | 7510    |  |  |
| $3n^3$                     | 4S                 | S             | 14981   | Р             | 12089   | Si            | 9609    |  |  |
| ° P                        | $^{2}D$            | 5             | 14983   | •             | 12090   | 51            | 9611    |  |  |
|                            | $^{2}p$            |               | 14983   |               | 12090   |               | 9611    |  |  |
| $3n^4$                     | 3p                 | Cl            | 18316   | S             | 14977   | Р             | 12087   |  |  |
| - P                        | $\hat{\mathbf{n}}$ | 0.            | 18317   | 5             | 14978   | 1             | 12088   |  |  |
|                            | 1 <u>S</u>         |               | 18 3 20 |               | 14979   |               | 12088   |  |  |
| 3n <sup>5</sup>            | $\tilde{^{2}P}$    | А             | 22136   | CI            | 18313   | S             | 14975   |  |  |
| $3n^6$                     | $\hat{1}S$         | ĸ             | 26476   | Ă             | 22133   | čı            | 18 3 10 |  |  |
| $4s^1$                     | <sup>2</sup> S     | Ĉa            | 31 384  | ĸ             | 26482   | er            | 10510   |  |  |
| $4s^2$                     | 1 <u>S</u>         | Cu            | 22001   | Ca            | 31 391  | к             | 26481   |  |  |
| $3d^1$                     | $\tilde{2}D$       |               |         | Sc            | 36831   | ix i          | 20 101  |  |  |
| $3d^2$                     | 3F                 | Sc            | 36775   | Ti            | 42873   | Sc            | 36794   |  |  |
| $3d^3$                     | 4 <sub>F</sub>     | Ti            | 42,808  | v             | 49 548  | Ti            | 42825   |  |  |
| $3d^4$                     | م <sup>5</sup>     | v             | 49478   | Ċr            | 56896   | v             | 49496   |  |  |
| 3d <sup>5</sup>            | 6S                 | Ċr            | 56812   | Mn            | 64947   | Ċr            | 56863   |  |  |
| 3d <sup>6</sup>            | 5<br>D             | Mn            | 64 886  | Fe            | 73 792  | Mn            | 64909   |  |  |
| $3d^7$                     | $4\tilde{F}$       | Fe            | 73718   | Co            | 83428   | Fe            | 73743   |  |  |
| 3d <sup>8</sup>            | $3_{F}$            | Č             | 83 342  | Ni            | 93881   | Co            | 83375   |  |  |
| 3d <sup>9</sup>            | $^{2}D$            | Ni            | 93 782  | Cu            | 105214  | 20            | 00010   |  |  |

Table 1. Total electron spin-spin contact interaction (in  $cm^{-1}$ ) for positive ions, neutral atoms and negative ions

| Configuration <sup>a</sup> | State          | Positive ions |                  | Neutral atoms |         | Negative ions |        |
|----------------------------|----------------|---------------|------------------|---------------|---------|---------------|--------|
|                            |                | System        | E <sub>ssc</sub> | System        | Essc    | System        | Essc   |
| 3 <i>d</i> <sup>10</sup>   | <sup>1</sup> S | Cu            | 105 105          |               |         |               |        |
| 4s <sup>1</sup>            | $^{2}S$        | Zn            | 117419           | Cu            | 105134  | Ni            | 93947  |
| $4s^{2}$                   | <sup>1</sup> S | Ga            | 130741           | Zn            | 117451  | Cu            | 105136 |
| $4p^1$                     | $^{2}P$        | Ge            | 145001           | Ga            | 130739  |               |        |
| $4p^2$                     | $^{3}P$        | As            | 160405           | Ge            | 145040  | Ga            | 130732 |
|                            | $^{1}D$        |               | 160408           |               | 145042  |               | 130733 |
|                            | <sup>1</sup> S |               | 160409           |               |         |               |        |
| 4p <sup>3</sup>            | <sup>4</sup> S | Se            | 176885           | As            | 160404  | Ge            | 145036 |
|                            | $^{2}D$        |               | 176881           |               | 160402  |               | 145034 |
|                            | $^{2}P$        |               | 176880           |               | 160405  |               | 145036 |
| $4p^4$                     | $^{3}P$        | Br            | 194 503          | Se            | 176882  | As            | 160400 |
|                            | $^{1}D$        |               | 194 504          |               | 176879  |               | 160398 |
|                            | $^{1}S$        |               | 194 507          |               | 176884  |               | 160397 |
| $4p^{5}$                   | $^{2}P$        | Kr            | 213 321          | Br            | 194 507 | Se            | 176873 |
| $4p^6$                     | $^{1}S$        |               |                  | Kr            | 213316  | Br            | 194497 |

Table 1 (continued)

<sup>a</sup> The positive ions of the transition elements (from Sc through Cu) have configurations  $4s^0 3d^n$ .

Table 2. Inter- and intra-shell contributions (in cm<sup>-1</sup>) to the electron spin-spin contact interaction in Br

| $\sum$     | 1s     | 2 <i>s</i> | 35  | 4 <i>s</i> | 2 <i>p</i> | 3 <i>p</i> | 4p | 3 <i>d</i> |
|------------|--------|------------|-----|------------|------------|------------|----|------------|
| 1s         | 119993 |            |     |            |            |            |    |            |
| 2 <i>s</i> | 18926  | 1634       |     |            |            |            |    |            |
| 3 <i>s</i> | 2925   | 422        | 63  |            |            |            |    |            |
| 4 <i>s</i> | 274    | 39         | 10  | 2          |            |            |    |            |
| 2p         | 16813  | 6217       | 763 | 70         | 14260      |            |    |            |
| 3p         | 2 509  | 540        | 270 | 20         | 2958       | 461        |    |            |
| 4p         | 138    | 29         | 11  | 5          | 158        | 41         | 5  |            |
| 3d         | 68     | 700        | 337 | 26         | 1 821      | 997        | 44 | 959        |

### References

- 1. Armstrong, Jr., L.: J. math. Physics 7, 1891 (1966).
- 2. Physic. Rev. 170, 122 (1968).
- 3. Physic. Rev. 172, 12 (1968).
- 4. -- Physic. Rev. 172, 18 (1968).
- 5. Chisholm, C.D.H., Dalgarno, A., Innes, F.R.: Advanc. atom. molec. Physics 5, 297 (1969).
- 6. Clementi, E.: Tables of atomic functions. San Jose: IBM 1965.
- 7. De-Shalit, A., Talmi, I.: Nuclear shell theory. New York: Academic Press 1963.
- 8. Donlan, V. L.: J. chem. Physics 52, 3431 (1970).
- 9. Tables of two-particle fractional parentage coefficients for the *p*<sup>n</sup>, *d*<sup>n</sup> and *f*<sup>n</sup> configurations. Technical Report AFML-TR-70-249, Air Force Material Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, 1970.
- 10. Doyle, H. T.: Advanc. atom. molec. Physics 5, 337 (1969).
- 11. Fano, U.: Physic. Rev. 140, A 67 (1965).
- 12. Fontana, P.R., Meath, W.J.: J. math. Physics 9, 1357 (1968).
- 13. Fraga, S., Thorhallsson, J.: Physic. Rev. 178, 70 (1969).
- 14. Fisk, C.: Can. J. Physics 47, 1415 (1969).

Electron Spin-Spin Contact Interaction

- 15. Innes, F.R., Ufford, C.W.: Physic. Rev. 111, 194 (1958).
- 16. Karaziya, R. I., Vizbaraite, Ya. I., Rudzikas, Z. B., Yutsis, A. P.: Tables for calculating matrix elements of operators for atomic quantities. Computation Center, The Academy of Sciences, Moscow, USSR., 1967.
- 17. Malli, G.: Canad. J. Physics 44, 3121 (1966).
- 18. Nielson, C. W., Koster, G. F.: Spectroscopic coefficients for the  $p^n$ ,  $d^n$  and  $f^n$  configurations. Cambridge: MIT Press 1963.
- 19. Rudzikas, Z.: Liet. Fiz. Rinkinys 9, 707 (1969).
- 20. Karaziya, R. I.: Liet. Fiz. Rinkinys 10, 13 (1970).
- 21. Saxena, K. M. S., Lo, B. W. N., Fraga, S.: Canad. J. Physics 49, 2031 (1971).
- 22. Sessler, A. M., Foley, H. M.: Physic. Rev. 92, 1321 (1953).
- 23. Shore, B.W.: Physic. Rev. 139, A 1042 (1965).
- 24. Menzel, D.H.: Prinziples of atomic spectra. New York: John Wiley & Sons 1968.

Dr. S. Fraga Division of Theoretical Chemistry Department of Chemistry University of Alberta Edmonton 7, Alberta, Canada